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ABSTRACT

The large amplitude vibrations of thin elastic plates and shallow
shells having various boundary conditions‘and subjected to random exci-
tation are investigated by using various approximate techniques.

The random vibrations of rectangular plates and circular plates
subjected to white random excitation are simulated numerically by two
different methods. The first method is that the governing equations
are reduced to a single-degree-of-freedom dynamical system and the
reduced equation is then integrated numerically by the Runge-Kutta
method employing the simulated approximate white noise as an input.

The second method consists in integrating the equation of motion and

the compatibility equation numerically by a finite-difference method
employing the simulated approximate white noise as an input. To compare
the results obtained by the simulation methods with those by other methods,
the single-degree-of-freedom system equation is solved exactly using the
Fokker-Planck equation, and solved approximately by the equivalent lineari-
zation technique. Also presented is the response analyses of shallow shells
to white noise by (1) numerical simulation using the single-degree-of-
freedom equation and (2) the Fokker-Planck equation. It has been shown

that the solutions by the numerical simulation are close to those obtained
by the equivalent linearization technique and the Fokker-Planck approach

while the second numerical simulation gives rather poor solutions.
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I
INTRODUCTION

In many physical problem areas there are situations where a mechanical
system is excited by a random type load and the response of the system
displays a random trend. Since the response process is not deterministic,
the response analysis must be treated statistically.

During the last two decades much research effort in the area of vibrations
has been devoted to the investigation of the structural response to random
excitation. Motivation for such research has arisen due to the development
of large jet engines and rocket motors which produce random pressure fields
of high intensity. Since the Tevel of random excitation generated by jet
aircraft and missiles provides a severe environment with respect to fatigue
failure of structures, the investigation of the response of structures to
random excitation plays an important role in the fields of aircraft and
missile design.

The works of Crandall [1,2], Bolotin [3], Crandall and Mark [4], and
Lin [5], contain various topics in random vibration analysis. So far the
literature in the area of random vibration analysis. So far the literature
in the area of random vibration has been surveyed by Crandall [6], Smith
[7], Bolotin [8] and Vorovich [9]. Therefore in the present Chapter only
random vibration of thin elastic plates and shallow shells will be reviewed
briefly.

Analysis of the response of a linear elastic structure with known normal
modes to random excitation of a given power spectrum have been carried out
by many investigators [10 through 13]. Usually the input random load is

assumed to be stationary, ergodic, Gaussian with zero mean value. For such



a case for a linear system it is possible to relate the statistical des-
cription of the output to that of the input. Hence, the mean-square
response can be evaluated under the assumption of a stationary Gaussian
input. However, the results of such analysis are valid only for small
lateral displacements. For moderately large displacements it is neces-
sary to take the effects of nonlinearities into account.

The motion of geometrically nonlinear elastic thin plates and shallow
shells is described by a system of two coupled nonlinear partial differen-
tial equations in terms of the lateral displacement w and the stress
function F, the so-called dynamic analog of the von Karman equations. The
lToad is again considered to be a stationary Gaussian random process with
zero mean value. Unfortunately, no exact solution for this problem has
been found. Only approximate solutions are possible. One approximate
solution is to reduce the partial differential equations to a system of
ordinary differential equations for the generalized coordinates and to
obtain an approximate solution by employing techniques used in nonlinear
mechanics. To do this, assuming that the lateral displacement W is

expressed as
fo (L)Y, (x,y) (1-1)

where fi(t) are generalized coordinates and Wi(x,y) is the coordinate
function representing the deflected shape of the structure, and using
approximation technique (for example Galerkin's method) the problem is

reduced to a system of N dynamical equations with respect to fi(t), 14843

d*f. (t) df. (t)
—Hfz—— + C’—d‘t— + gi(f] afz,-.. ,f ) = Q1(t) (]'2)



where ¢ = generalized damping term

95 generalized nonlinear stiffness term

Q.

i
An alternative form of the governing equations for fi(t) derived by

generalized random forcing function

mean of the Lagrangian equation takes the form

d*f, (t) df. (t)
i i U _
e e e - 4G

1&= Fs25+70 N

(1-3)

where U is the potential energy of the system.

Only under the restriction that the generalized random forcing function
Qi(t) is stationary, Gaussian, white noise or filtered white noise, can
eqs. (1-2) or (1-3) be solved exactly in terms of the joint probability
density using the Markov process and the associated Fokker-Planck equa-
tion [14]. This approach was first applied to the case of a nonlinear
system by Andronov et al [15]. Herbert [16] investigated the multi-
mode response of beams and plates to white noise excitation using this
approach and showed that the probability density function of the model
amplitude is non-Gaussian and statistically dependent. Dimentberg [23]
applied the approach to the curved panel problem taking one term of

the series for normal deflection in eq. (1-1) and studied the fatigue
damage.

If the random forcing is not assumed to be white noise, only an
approximate solution to eq.(1-2) or (1-3) is possible. One approximate
technique for this type of equation is the equivalent linearization
technique which was originated by Krylov-Bogoliubov [17] in determinis-
tic theory and was applied to problems of random vibrations by Booton
[18] and Caughey [19]. Lin [20] investigated the single-mode response
of a flat, plate undergoing moderately large deflections subject to

stationary Gaussian excitation whose power spectrum is relatively flat.
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Another technique to obtain an approximate solution to eq.(1-2)
is the perturbation method. This technique was first introduced to
random vibration problems by Crandall [21]. This approach can be
applied only to systems with very small nonlinearities.

Besides the above mentioned approximate approach, another method
to estimate the response of a nonlinear elastic structure to random
excitation is a numerical simulation technique which has been exten-
sively used in the investigation of structural response due to earth-
quakes. This technique is to digitally simulate a physically realiza-
ble random load and to integrate the equation of motion numerically
by employing the simulated random load as a forcing function. Then
we compute the desired statistical properties of the response. Belz
[22] used this technique to investigate the problem of a beam subjected
to a concentrated random driving force. However, this method is time
consuming if the structural model is complex. Instead of solving the
original partial differential equation, eq.(1-2) may be integrated
numerically.

In the present study, the large amplitude vibrations of plates
and shallow shells having various boundary conditions and subjected
to white random excitation will be investigated by using various
approximate methods. Before going on to the analyses of the response
to random excitation, an investigation of the structural response to a
deterministic load will be made as a preliminary study in Chapter II.

In Chapter III, a Gaussian stationary white random process is
digitally simulated.

In the second section of Chapter IV, the random vibrations of
rectangular plates and circular plates subject to white noise are

simulated numerically. Two different simulations are presented:



(1) the governing equations are reduced to a single-degree-of-

freedom dynamical system by taking one term of the series representing
the normal deflection in eq.(1-1) and the equation corresponding to
the case of N=1 in eq. (1-2) is then integrated numerically by the
Runge-Kutta methéd employing the simulated white noise as an input.
(2) the equation is integrated numerically by a finite-difference
method employing the simulated white noise as an input. To compare
the results obtained by the simulation method with those found by

other methods, the single-degree-of freedom system equation is solved
exactly using the Fokker-Planck equation. Also the approximate solu-
tions obtained by the equivalent linearization technique are presented.
In the third section of Chapter IV, the response analysis of shallow
shells to white noise is carried out by (1) numerical simulation using
the single-degree-of-freedom system equation and (2) the Fokker-Planck

equation.



II

RESPONSE OF THIN ELASTIC PLATES AND
SHALLOW SHELLS TO STEP LOAD

In this Chapter, the response analysis of flat rectangular plates,
flat circular plates, aribtrary shallow shells with rectangular boun-
daries and shallow spherical shells with a circular boundary to a uni-
formly distributed step load will be discussed. Nonlinear partial
differential equations governing the finite amplitude deflections of
plates and shallow shells are approximated by the finite-difference
equations by use of the Crank-Nicolson finite-difference scheme [24]
and these difference equations are then solved numerically using a CDC
3600 digital computer. The computer program for this analysis can be used
for investigation of response to an arbitrary input forcing function if
the input forcing function is digitally simulated. In Chapter IV the
computer program written in this study will be used for digital simulation
of random vibrations of plates. The purpose of the study in the present
Chapter is that before simulating random vibrations we determine the
numerical stability of the solution and the accuracy of the solution by
investigating the response to a step load. Since the steady state response
of the damped system to step load must agree with that under static load,
we can check the computer program and the accuracy of the approximate solu-
tions by comparing the values obtained here with existing results for the
static load.

2.1 Rectangular Plates and Shallow Shells of Rectangular Contour

2.1.1 Analysis



Governing Equations

Consider a thin, elastic, isotropic shallow shell rectangular in plan
with double curvatures and of constant thickness h, Young's modulus E,
and Poisson's ratio v. The origin o of the curvilinear coordinates x-y-z
is chosen at a point of the middle surface corresponding to one of the
corners of the shell. (See Figure 2-1) Let the oz axis extend along
the normal to the middle surface toward the center of curvature. The ox
and oy axes are drawn parallel to the lines of principal curvature of the
shell. a and b denote the dimensions of the shell along the ox and oy
axes. Also k and k are the curvatures of the she11 which remain constant
along the ox and the oy axes, respectively. Let w be the displacement
of a point in the middle surface along the oz axis.

The differential equations governing the finite amplitude vibrations

of such a shell are [25]

*
3zw* " h * _ 32F" 32w
ph-gﬂ-— Cp——+DVw-h-§y—z(k +—5—2—)

52F " 32y 32F" 2w * (2-1)
* axZ(ky L ayf’ - 2haxay Xy "4
x * *
R o 2 BZW‘ 9%w 92w
i E[(SXSy) axz  oy? Ky dyz y ax2] (2-2)

®
where D=Eh®/12(1-v?) is the flexural rigidity of the shell, F 1is the Airy
stress function, p is mass density of the material, c* is the damping co-
efficient (assumed to be constant), q* is the lateral load and t denates

time.

* * *
Membrane stresses Oy oy and Txy in the middle surface are given by



*
s 9%F
oy 2
* _ 3%
% T Txz (2-3)
¥ p2F
T = - —
Xy aXoy
*®
The strains in the middle surface are expressed in terms of F as
* *
g WEE. T
x E' 9y? ox?2

LT (2-4)
€ T EVoxz "V ay?
*
¥ oo 20%) BOF
Yxy E oX oY

Considering 4 and v which are the displacements in the middle surface
in the x and y directions, respectively, the strains are expressed in

* * *
terms of u , v and w as

" £ 10w
= ou_ _ 1 (OW y2
€x T x kxW ¥ 2( X )
x 10w
= 2. L (oW y2
&= wy - KWt 2l (2-5)
* e * *
*_odu 9V L W W
Yxy oy X aX oy

The bending moments are

%* %
Moo= _D(BZW 3 aj_"_’___)
x X2 dy2



32w 32w (2-6)
My = D57 + x2) cont'd

Non-dimensionalized Equations

Let us introduce the following dimensionless parameters:

(0]
A 0, = PR’
*
T
- 2 _ Xy /b2
K, = 12(1-v2) Ty = <E )
"
n=g u =5z
14 %
D \2 v b
T = t(—) vV =
b8 “h
41 k a?
c = c*(-ﬂg—)é- k1 i
* k b2

*
*
F ey q = qbt/ent
*
%% /by2
gy = E—{FJ A = a/b = aspect ratio

(2-7)

Using the above dimensionless parameters, the equation of motion (2-1) and

the compatibility equation (2-2) are now expressed by
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“ - 4

92w oW _ W 5 W 3 W 0%F ;5%w ]
3tz Yoot T G t g gt Kogrzlmer + 32
32F (3%w 32F 32"
* Koaezlanen® ko) - 2Ko55m sean T K9
(2-8)
3°F £ 2*F " W; - (82w )2 _ %W 3%
ot agzanz ant 3E3N 9E2  an?
c W 3w
15n% = *29E% (2-9)

Boundary Conditions and Initial Conditions

In this study, shallow rectangular shells with the following two
boundary conditions are considered:

a) A1l four edges are simply supported and immovable constrained

against in-plane translation.

b) A1l four edges are clamped and immovably constrained.
Let us formulate each set of boundary conditions. For the simply supported
case, the deflection w along four edges must be zero and there is no bend-
ing moment along any edge. Thus, the analytical formulations of these

boundary conditions in dimensionless form are from eq. (2-6),

3%w 3%w
w =0 and s VaEz = 0 gtn=0 andn =1
2 2 - =
i 9 W 9O°W _ 0 at £ =0 and £ = )

0 and Ez—‘i'\)—
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" B g 1 9w 32w
Since w=0 along n=0 and n=1, 3EZ must be zero. Also, Nz
becomes zero along £=0 and &=A. The above conditions can therefore

be written as

32w
w=20 and e =0 atn=0and n =1
(2-10)
32w
w=0 and 3z ° 0 at £ =0and £ = A

If the edges are also immovably constrained at the supports, the normal
strain in the middle surface parallel to the edge must be zero along the

edge. The boundary conditions are from eq.(2-4),

2 2
%E;-- v%g; = 0 at &= 0 and &=\
(2-11)
2 2
gTE'gTFf=° st i B and e

One additional condition required is that the relative displacement of the

points on edges £&=0 and &=x for any given value n is equal to zero.

A
ou
- = =) d = () 2-12
Yg=x = Yg=0 Jo (35)n=c%nstant ( )

F rom egs.(2-4) and (2-5), we have

ou

du 32 F oW, 2
JF 2

Nl N Ll R ')
"z Yz ~ 2(

Y

Substituting this expression into eq.(2-12) gives

A
[A 2 92F J
| Gr-vgn) de= | EHE2 Wl de (2-13)
0 n = const. © n = const.
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In a similar fashion, we have

1 1

32F 32F _ 1,3w,2
|, G iR o | 7 - g el
£ = const. & = const.

Nlext, consider the boundary conditions for clamped shells with
immovably edges. In this case the deflections along the boundary :re
zero and the plane tangent to the deflected middle surface does not rotate
at the edges.

Therefore, we have

w=0 and %%-= 0 at n=0 and n =1
(2-15)
w=20 and ég-= 0 at £E=0 and £ = A

The conditions (2-11), (2-13) and (2-14) must also be satisfied.
For initial conditions we assume the body to be at rest.
Then
Ww=0 and 2% =0  at =0 (2-16)

The transverse Toad applied to the shallow shell in this Chapter is
a uniformly distributed step function type load which is expressed by
q(gsn,t) = Qu (1) (2-17)

where

L
"

amplitude of the load

unit step function defined by

{ =
—
—
~
1]

1 when 1 >0 (2-18)
u(t) %- when 1 =10
0

when T <0
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The problem consists in determining the functions w and F which

satisfy eqs.(2-8) and (2-9) together with the prescribed boundary con-
ditions and initial conditions. Because of difficulty in solving these
simultaneous partial differential equations analytically, these equations
will be solved numerically by a finite-difference method. The idea behind
numerical integration of eq.(2-8) by the finite-difference method is the
following: If the deflection w in the middle surface is specified at a
certain time level Ty the stress function F and the membrane stresses

are determined by the compatibility equation (2-9) and boundary conditions.
Given membrane stresses at time level Tys We seek the deflection w at the
next level Tk+ATwith load Q under the assumption that the membrane stresses
at each point remain constant in the time interval [Tk,(rk+Ar)J. By this
assumption, the equation of motion (2-8) is treated as a linear partial
differential equation in the time interval [Tk, (rk+Ar)].

Equation (2-8) is reduced to two lower order differential equations

by introducing the two variable W and V defined as follows:

2 2
W = gTV; + gT‘; (2-19)
V= g—!'r’ (2-20)

If we differentiate eq.(2-19) with respect to t and substitute eq.
(2-20), we have

oW _ 32V _ 2%V
9T  3&Z  OnZ

which is the first desired equation.

(2-21)
Substituting eqs.(2-19) and (2-20)

into eq. (2-9) to get,

av B 82 32w azw azw 82W
awt Y- Gt K lage t ogm * 2ngen)
+ KO(O-I k-l + Ozkz + Q) (2_22)
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If we define the column matrix U as
(W
! (v) (2-23)

then, eqs.(2-21) and (2-22) can be written in matrix form as

10y 38U, 00y, _ 071y 22U, 3%
01) st lod V=40 Gt
0
Y L 92w

32w
0135—2' + 0’2'§-n—z— + 2‘[12-55-5—_” + O-lk1 + 02k2 + Q
(2-24)

Formulation of the Finite-Difference Equation

If we restrict ourselves to the first mode type response of shells,
it is only necessary to consider one-quarter of the shell because of the
symmetry. Let us consider the rectangular network as shown in Figure 2-3
at time Ty The grid dimensions in the £ and n directions and the time
increment are denoted by AfZ, An and At, respectively. If one-quarter of
the shell is divided into (M-1)x(N-1) sub-divisions, the spacing dimen-

sions A£ and An are

.
2(M-1)

m=_ (2-25)
ZIN-T) :

v = 88780 = & (N-1)/(M-1)

Besides the interior points (M-1)x(N-1) and the boundary points (M+N-1),
fictitious points are introduced along the lines & = - Af and n= - An. Let

us denote any variable ¥ at a discrete point Pi and at time level Ty to

k
1,J°
script denotes time level.

J

be V¥ Hereafter, the subscript represents the position and the super-
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We shall reduce eq.(2-24) to the finite-difference form using Crank-

Nicolson finite-difference scheme.

The partial derivatives are approximated

by
r k+1 k
= ktl k+1 k k
( ) = (Ufe,5 = Y31, Uin,; = Ujoq,j)/808
32U _ okt k+1 k+1 k k
blng ® Waa g T Y Ve 2
uk 2
% 1 5 J)/Z(AE) (2-26)
_ okt k
Wyg =Wz ¥l 50
and (w)i j can be expressed in terms of w§ j and U? j as follows:
_ g.k*] k
g™ W ¥y g
k _ 4 kt+] k
N = g g = g
From these two equations
_ ok, AT k 2-27
Wy 5 =wi,3* 201 Uy Pl

Using eqs.(2-26) and (2-27), eq.(2-24) is approximately written as

k+1 k

(1 0) 143 151 "
01 AT

T SR o BT s DT S T

(0 C/z) (¥ k+]

k
i,j 7Y

=% Hom
o i Nl Q) 2(AT) 2

r2\i41,j §=1,3 1,j+1 i,5=1
K1y . 1 ok K ok k k-
- ) Ui g Vi, W)t Wit Y
k+1 k+] k+1
- auf )“TE“Y%" i+1,5 ¥ Yia1,5 = Yy



k1 k1 k1 k1 0
x (Ui, 541 Uior,+1 Uis1,5-1 Uily,9-17 * (g)
where K
_ k k 91 o dnk k
Anloluggy * Sugs * 0 * Ton Mg F Y

k
k ik k k
~Biggd ¥ i Mga g < By

k k k

k
Tiag i (wk.. . ® Wy = Woiq o oW i
2<En1;2r2 (w1+] ’J+1 w.l"] ’J+.| w1+] SJ_] w1-] ’J-] )]

to the Teft hand side and those

Transposing the quantities at time Tkt

at time Ty to the right hand side, eq. (2-28) is written as

k1 k+1 k+]
[0g] Ujsy, 541 + [0gd Uiyq 5 *+ [D71 Ujyq 50 + (061 U5
k] k1 k1 k1
* gl Uy 5+ D0l Uy 5q # 03] Uiy 5+ DD UG

k+1 k k
# 0yd Wiy 3 [Col Uiyy 541 + [Cgd Uiy j
+ [c] uk + [c.]uk + [c.] uk + ] uk
2l Uiy 59 gd U5 s g Uy 5 + T
K K ‘0
e Uiy 5 G DU 5+ G U1 s +<:AIA))

k+1
1,J+1
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(2-28)
cont'd

(2-28)

(2-29)

(2-30)

where [Dm] and [Cm] (m=1,2,""",9) are the square matrices defined by



0 0 i
[Dg] =
2
; ) KOT]Z(AT)
\ AT] r D
T AT 1
0 - TET
[0g] =
2
i Kool(An)
1 2(An) % 2(an)r?
To 0 1
[07] =
2
KoGrp(7)
An)“r
(0 _ AT ]
2(an)?
[06] =
2
AT _ KOOE(AT)
2(4an)? 2(4n)2
. A
Ty (14 12)
An 2 r2
o] =
2
K o, (A1) K o,(a1)
= él_. ]+.12) ]+ 0 1 + 0 2
(an)2 T (an)2r2 (an)2

17

(2-31)



[ty =

[0,

[D,]

[0, ]

[Cg] =

AT
0 2(An
2
g Kooz(m)
2(an)? 2(an)?2
0 0 ~
K T-IZ(AT)Z
0 0
L 4(an)%r
0 - At ]
2(an)?r2
2
AT _ Koo](Ar)
2(an)4r 2(An)“r
2
0 ) KOT]Z(AT)
4(An)er
= P
o
0 At
2(An
At
__ 2(AT)“r 0

18

(2-31)
cont'd
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- __(_2_;)7“*?;_) w

[c] =
o g
T e

[C4d = (2-32)
e L

[c] = [cq]

[c,] = [Cg]

[Cg], [C7], [C3] and [C]] are null matrices.

The compatibility equation (2-9) at time T} and at interior point Pi j

(3 <i<M+1, 3<j< N+1) has the following finite-difference approximation:

4 3
2F1.’J.(3r +4+ r)+2(F F F F

RIS R LT T PSR

1 , 1 . e
*treFiag, 3 T geet veFi2, 5t F 327t 0 )P

SA(1Hr2)FL =81+ D)F g A (r2HF

1,J i"j-]

_ ] i 2
" 13*W1+1,j+1'wi-1,j+1+wi-1,j-1 W1+1,j-1)

~(Wyaq, 521,572 50 O 5ty 5172 )



(2-33)
cont'd

2 2
Ky (W5 a1ty 51y 5) (an)T mkplwyyq sty s-2wy 5) (an)

Now let us formulate the boundary conditions for the simply supported

shells. For the point P: 5 and P2 on the boundary, eqs. (2-10) and (2-11)

m
! ]
are written in the finite difference form as

Wi 2= 0 and Wi 3 = Wi 4 2 <i<M+1 at n=0

]

(2-34)
Wom = 0 and W3 m SWim 2 <m< N+l at £=0
PRy 5 12 ) Frg 2P 2y )0
2 <i <M atn=0
(F3,m +F1,m '2F2,m) 'Vrz(FZ,m+1 ¥ F2,m-1 - 2F2,m) =4
2<m<N+1 at g =0 (2-35)

The integrals in egs. (2-13) and (2-14) are approximated by the trapezoidal
rule as follows. In the ¢ direction, keeping n constant, eq.(2-13) is

approximately expressed by

3<j <N (2-36)
Similarly, in the n direction, eq. (2-14) is expre:c:zed by

~

LI 2F B2
2 {GE-vmdig t GE - v hjﬂ}

(oW fo¥]



182 Tow,\2 -
=Z{7(‘n‘)i,: VIR 2 eo FI kzwi,jﬂ}

3 <i < M+

"4

(2-37)

Equations (2-36) and (2-37) are expressed by the following finite-difference

equations:
M-2
Z 2 - -
=2 -{r (Fisj+] * Fisj-1 2F1,j) v(Fi+1,j'+ Fi—],j
~ By TR T AR s # Fgg 44 2Fi41 5

M-2
= 2 4 &
Mgy ¥ Frg - g} =2l T
=2

—

2 2 . B 2
i = ey ¥ genag -

3 =.J = N+l

i
—
>
=
S
N
~
—
=
—
+
—_—
—

N-2
1
Z{Fr‘ﬂ-ﬂ,j Ryt %) vy ie Ry i)

- 2F,

1
« 2Fy o o Wt e ¥ Fien, 3 s

- \)(F.’j+2 + F_i ,j = 2F_i’j+])}

N-2
Z (70 301 - ¥

(T, R

1,31 21,4

1 2 2
Pl gap ~ Wi,g)T o (An)Tky g4 ]

3 < i< M

(2-38)

(2-39)



For the clamped shells, the finite-difference forms of eq.(2-15) are

Wi 2 0 and Wi 3 =W 2<i<Ml atn=0 (2-40)

1
o

2<j=<h*¥l at g

W, . =0 and w :
293 3 sJ (2_4] )

g =9

Equations (2-38) and (2-39) must hold for this case, too.

Procedure for Solving W i and Fi ;

2J

H)

Together with egs.(2-33), (2-38) and (2-39), the following simultaneous
equations for the stress function F at the interior points and the boundary

points are formulated:

[A]l {F} = {G} (2-42)
where [A] is the (M+N+MN-1)x(M+N+MN-1) square matrix whose elements are

constants, {F} is the column matrix of Fi j and {G} is also the column matrix

whose elements are functionsof wi i In the above formulation, the stress
t]

function at the corner F2 2 has been assumed to be zero following Wang's

22

assumption [26]. From eq.(2-42), if the deflection Wy 3 at each discrete point

5

is given, then the stress function Fi,j and the membrane stresses at each
point can be determined.
The initial conditions (2-26) now take the form
w?’j =0 and u$’j =0 (2-43)
Equation (2-30) together with the boundary conditions (2-34) or (2-41) may
be solved for U:,j using a digital computer by the following procedure.

Step.1 Given the initial conditions (2-43), eq. (2-42) is solved for F? 5

from which the membrane stresses at each point Pi j are determined as
)
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- 2
= (Fi g1Fy g1 2Fy ) (an)

1.3 (2-44)
0ps = (Fipn #F. 1 =2F. .)/ré(an)?
21, L I P R -
M12i,3° Fier, 07 Ficn, 30 Fier 50 (2-45)
2
+F.i_'| ,j_])/4(AT\) F

Step.2 Substituting these initial deflections, the membrane stresses and (Q
into egs.(2-29), (2-31) and (2-32), eq.(2-30) represents the simul-
- taneous equations for U, . Solving for U, . w. . is then found
T1,J. 15y 1,]
from the relation

_ 0 .
Wij =W ot (0 1)ui’j (2-46)

Step.3 Substitute w} j into the right hand side of eq. (2-42) and solve

for F} 5 Calculate the membrane stresses by eq.(2-43). Return

to step 2 and continue the procedure.

212 Examples

As an example of the present analysis, the steady state response of
the following structures to various magnitudes of step Toad were determined.

1. Simply Supported Rectangular Plate (Aspect ratio =1, 1.25, 1.5

and 2.0)

2. Clamped Rectangular Plate (Aspect ratio w=1, 1,25, 1:5 and 2.0)

3. 'Simply Supported Double Curvature She]]v(Asbect ratio r=1)

4. Clamped Double Curvature Shell (Aspect ratio A=1) As previously
mentioned, the supports do not permit in-plane displacement of the edges of
the structure. For a rectangular plate with aspect ratio A, the spacing dimension

ag for fixing N=4 and M=5 was determined by (See Table 2-1)
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N-1
AAHM:T
A/8 (2-47)

Ag

If we choose M and At such that

M=[1+ 1 (N-1)] (2-48)

A
A =
20T =t

the solutions will be more accurate than those obtained by eq.(2-47 ). However
a much longer computing time is required. Therefore, the choice of At was made
using eq.(2-47) by sacrificing some accuracy of the solutions.

Since there is no criterion for determining the time increment At to
bring about numerical stability and convergence of the solution, At was
determined such that further deceasing At did not apprecially affect the
response. For the following values of At, the numerical solutions were
apparently convergent:

Simply supported square plate AT§§X10—3

Clamped square plate Ar§5x10'3

Simply supported rectangular A151x10'3

plate with aspect ratio A=2

Clamped rectangular plate Arg]x10'3
with aspect ratio A=2

For all cases, it was found that At=0.002 is sufficiently small. Through the

present Chapter At=0.002 was used.

In Table 2-2 the results are listed together with Kornishin's static solutions °

[27] and the difference ¢ between the results obtained in the present study and
his results are also listed for comparison. It can be seen that even if the
interior points are 9(N=4 and M=4) or 12 (N=4 and M=5) in number, reasonably
good results were obtained. In Figure 2-5, a typical deflection response curve

for the case of a clamped square plate is shown.
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TABLE 2-1

CHOICE OF r, M AND N

M
4
5

N
4
4
4
4

r=A££n
1
15/16
9/8
3/2

25
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2.2 Circular Plates and Shallow Spherical Shells

2.2.1 Analysis

Governing Equations

The finite amplitude vibration of a thin elastic, shallow spherical
shell of thickness h, Young's modulus E, Poisson's ratio v, constant curva-
ture k* and base radius R after assuming axisymmetry is governed by the
following two simultaneous partial differential equations [25] in the polar

coordinates system shown in Fig. 2-2.

phZ W, + phc*—%¥f + vt = h %%;(3§¥; + k)
* *
éé%?‘%%?‘ £ K) 4 g (mt) (2-50)
E B 'Eaggz' 3?: - k*E(§§¥; . ‘%%;3 (2-51)
where
v4 _ gi . o3 ) o 5B
ar rorS  rlarl r3ar
W* = the normal displacment of a point in the middle surface
c* = viscous damping
F = stress function
q*(r,t) = lateral Toad
D = En3/12(1-%)

The membrane stresses in the middle surface are expressed by

*
by
rar
(2-52)
* %
%
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The radial strain €p and the circumferential strain €q are

au* . 1 oW 12
BB ST RE ¥ Fler)
(2-53)
u* * %
Ee-'-—F-kw

where u* is the radial displacement of a point in the middle surface of the
shell.

The membrane stresses are also expressed in terms of € and €q aS

o =] E2 {e. # vee)
=8,
(2-54)
x E
% ]_"?_(Ee +ve)
=\
From egs. (2-52), (2-53) and (2-54)
% 185 oF
v =kw * g5 Ve
(2-55)
sul %% 1, oW a2, 1,0F il
Tt T 1 T L
Bending moments are given by
* azw* aw*
- N oW
My = - D( 3 p2 HERT )
(2-56)
* aw* azw*
M, = - D( + )
9 rar ar2

In the present study, the following two edge conditions will be considered.
(a) Simply supported immovable edge
(b) Clamped immovable edge

where again the edges cannot approach one another. Let us formulate these

boundary conditions analytically.
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(a) Simply supported shallow spherical shell with immovable edge

* *
Since deflections w and the bending moment Mr are zero at the edge,

from eq.(2-56) we have

* *

W = 0 and 9—!?-+ %— %%— =0 atr=R (2-57)
ar

*
Also the radial displacement u at the edge is zero.

From eq. (2-55),

A Y
u- P = = =
i kw + E(st— vFEF) 0at r R

*
But, since w = 0 at r=R,

* *
L A | SR T (2-58)
ar ror

Considering eq.(2-52), an additional restriction for F* is that at the center
of the shell, the membrane stress o: must be finite. Thus,

oF =0 atr=0 (2-59)
Since u =ag at r=0 and r=R, integration of the second equation of (2-55) from

r=0 to r=R leads to

o * * 2*
fg% R < 3352)} dr = 0 (2-60)

r E'rar
which will be used for the formulation of the finite-difference equation.
(b) Clamped shallow spherical shell with immovable edge
The deflection and the slope at the edge are zero.

Thus *

w* = 0 and —%% =0 at r=R (2-61)

Conditions (2-58), (2-59) and (2-60) must hold for this case too.
For convenience, let us nondimensionalize all equations by introducing

the following dimensionless parameters:



W = w*/h g =
s = r/R k =
F o F/ER2 o, =
e = tlo/ohi®) 2 !

¢ = (onRYD) 2 K =

32
q R/En
k'R2/h

o RE/ER°
r

*
g =oeR2/Eh2

12(1-v2)

(2-62)

Using eq.(2-62), egs.(2-50) and (2-51) become

32w 4 aw
3tZ * CSE'+ BRI [asz( a sas)
+9F 32w
¥ §
sas(k 39S 2 ql
4 32w aw 32w |, aw
= - — - 4 —
W T — RlgeE® St

respectively. The boundary conditions (2-57) and (2-58) for simply supported

edges are now expressed by

32
3

=

CL

Vv
= + = —
w =0 and e

%

ii; SN L A
9S S9S

respectively. Conditions (2-59) becomes
oF _
- 0

Equation (2-60) is transformed to

1
JO(%S-S BZF J [-2- M2 _ kw] ds

(2-63)

(2-64)

at s=1 (2-65)
at s=1] (2-66)
at s=0 (2-67)

(2-68)

The boundary conditions for the clamped edge (2-61) become
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Ww=0and 2% = 0 at s=1 (2-69)
The initial conditions imposed here are

w=0and3%=0 at =0 (2-70)

The problem for a simply supported edge consists in finding w and F from
egs.(2-63) and (2-64) subject to the boundary conditions (2-65) through (2-68)
and initial conditions (2-70). For a clamped edge the boundary conditions are
given by eq. (2-69) instead of eq.(2-65). The method of solution employed
here is the same as that used for the rectangular shell.

To reduce the order of the derivatives in eq. (2-63), we introduce two

new variable W and V defined by

32w

W= —

9s
(2-71)

_ oW

V_Bt

Eliminating w from above two equations, we have
oW _ a2y (2-72)

S
Using W and V, eq.(2-63) is expressed by

aV w oSN 2 W W ] AW
e elgm ¥ o ?2*3335’
+ Ko[os(w LY e(_,:'—a— + k) + ql (2-73)

If we use the vector U defined by

( ) (2-73)
)
-72) and (2-73) are expressed in the following matrix form:

0 0 1 0 O
= - 8_2‘12J_+ é.llj.
1 0 3s g_ 0 9S

0
U +
; 1 \ow
0 K0q+(koce- EQ)EEE + K (os+oe)k

eqs.

(2-75)
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Formulation of the Finite-Difference Equations

Consider a system of one dimensional equally spaced discrete points

k

Pi at time t, as shown in Figure 2-4. Here the subscript i represents

k
the spatial position and the superscript k denotes the time level. Be-
cause of the symmetry we consider the motion of only a radius of the

shell. Let us divide the radius 1 into N intervals and call the point

at the center of the shell Pg. One fictitious point P§+] outside the
edge is introduced. The spacing dimension As is 1/N.
Let us write the finite-difference analog for eq.(2-75) using
the Crank-Nicolson finite-difference scheme which was introduced in
the previous section. Since we have a singularity at the center s=0,
we must consider the case for s=0 spearately.
At points P? (0<i<N), eq.(2-75) may be approximated by the following

finite-difference expression:

PO ke ? O 1) ukTak
il 14 il
AT k 1 2
0 1 -KOGS1' - gﬁ G
0 -1
Kt k1 kK
B o Us#1 “Yi-1*U54-Yi4
4ps
1 0
0
K Kk K1 o k+]
K.k %i 1, M ™Yi-1 . acMViar-Yiar)
oq+Kok(°ei+°si) o (Ko_—; - E?) ( 2AS g 4As (2-76)

Here it has been assumed that the membrane stresses remain constant in the

time interval ['rk(Tk+AT)]. Rewriting eq. (2-76), we have
L]
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k+1 k+1 k+1
[B3dU5ay + D805 + I8y U5
0
= [A UK+ AU + A UK L+ (2-77)
3771+ 2= 1-79=-1 Gk
i
where [Bj] and [Aj] (§j=1,2,3) are square metrices defined by
0 _ AT
2(as)?
[83] = B o i :
AT AT /
26555 s (§$"Ko°ei)
1 AT
(as)?
= (2-78)
[32]
AT 1 1
_?{Koos1+ E? & iAs&g 1+ 5 a1
g 0 _ AT -
2(As )
[31] =
gl el e ﬁéllf_(l_. K oX.)
2As'As © S bassy s 0’6
r 0 AT
2(2s)?
[A3] =
A1, ] 1
2astes * s 0
s 1 AT
(4s)?
[Az] =
AT 1 1 CAT
(Koot = + ) 1- 5%
?_ si’ s3 (as)? g |
= AT N
0 2(as
[A]] =
Aty 1 1
sy “
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and G? is defined by

k Kk
O LT B N . D
0" LAT™M9G 054 P ] 2As

K

Gy =

wn

The compatibility equation (2-64) at the point P? (1<i<N-1) may be
written in the finite-difference form

(F -4Fi+1+6Fi-4Fi_1+F1_2)/(AS)‘ ¥ (F1+2‘2Fi+1+2Fi-1

i+2

3 2 -
-Fip)/sq(05)%- (Fy g -2Fi+Fy g/ (s508)% + (Fyyq-Fyq)

3) = - - g 3
x(1/2Assi) (wi+] 2wi+w1_])(wi+] wi-1)/251(As)
= = 2= =
KWy q-2wstw, 1)/ (85)2 -k(Wyq-w;_q)/2s;(8s)
(2-79)
At the point Pg,i.e., the center of the shell, using L'Hospital's rule,

eq.(2-75) takes the form

1 0 0 0 [0 =1 ) 0 0
3U B 52U
T e oS o Ko(cs+°e) U
0 1 0 ¢ g o 1 0
3
- 0
4
K, (qrogta,) (2-80)

which has the following finite-difference analog:

kel & L Sk e ¢
2[83]U1 + [Bz]uo = 2[A3]U] + [A2]u0

2 0 (2-81)

Ko [q+k(o§0+cgo) Jat
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where
0 _ AT
2(4s )2
[B3] =
4 0
| 3(as)?
[ 1 AT
(as)?
[85] =
1 K, sl 8 At 1
Ko (9g0to50) 8- 3 [Z5)]2 . 2947 ) (2-82)

At s=0, the compatibility equation (2-64) can be expressed as (See APPENDIX),

4
8 'F _ 32w 32w
? = - (S-S_T )2 =~ 2k8—52- (2'83)
which reduces to
4 . & Poiom oo 2 Y
5(F ,-4F,+3F ) (Wy-wg)  -k(wy-wy) (as) (2-84)

The boundary conditions (2-65) and (2-66) are expressed by
M TN-T L v M TN

Nt P i
(as)? s NAS

respectively. The integral in eq.(2-68) is approximated by the trapezoidal

rule as
N-1
1 32F ' oF _ 3%F 1,9F  _ 3%F
0w} ezl 22 { o = igely * s =il

_ 1p1 /0wy 0 T1el /3
- ?{?(350 - kwp +;E:: [2 as 1 ki ] + 5{5'(%¥'N' kwN]

In finite-difference form, this becomes

(ew) 0 azh FinFig B *Fy p-2F
(bs )& :ggg 25.As (as)<

o P2y
e \ 25 (As (as}=
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j+1 7Y )
wo Mcry ( 8(As)‘ - kwi)

o 0L 1_( N+1 " M-1)° "
28 (as)F  ~ "y (2-88)

The boundary conditions (2-69) for a clamped edge are expressed by

i = Tand Mgy = g (2-89)
Also, conditions (2-86) and (2-88) must be satisfied for clamped shells.
The initial conditions (2-70) have the form

=0and V3 = 0 i=0,1,-++,N+] (2-90)

Procedure for solving for W and Fi

Equations (2-79), (2-84) and (2-89) constitute the following simultaneous
equations for Fi:

[KI{F} = {L} (2-91)
where [K] is an (H+1)x(N+1) matrix whose elements are function of as, and Sis
{F} 1is a column matrix of Fi’ and {L} is a column matrix whose elements are
function of w?. If the deflections at every point are known, then the
stress function F at every point can be determined by solving eq.(2-91),
namely

(F}y = [KI7' (L) (2-92)
The procedure for solving for W, is essentially the same as that described
in the previous section (2-1-1):

Step 1. Substitute the initial conditions (2-90) into {L} of eq.(2-92) and

obtain F?. Then the membrane stresses at each point can be cal-

culated by



39

B Tl P

i 25;0 1<i<N (2-93)
. B

% K

At the center of the shell s=0, using L'Hospital's rule

s =, =2(F]-FO)/(AS)2 (2-94)
0 0

Step 2. Substitute o, and o, into (2-78) and (2-82), and compute U?. Solve
i i
eqs. (2-77) and (2-81) for U}. The deflection w} can be obtained from

w]
i

W + Ar(o,1)u}

0 1
. + v
w_| ATV,|

Step 3. Substitute the new deflection w} into {L} of eq. (2-92) and compute
F}. Repeat this procedure.
2.2.2 Examples

As an example, the computation of the deflection response was carried out
for the following cases.

1) Simply Supported Circular Plate

n

Clamped Circular Plate

w

)
)
) Simply Supported Spherical Shell (k=1,2, and 3)
)

4) Clamped Spherical Shell (k-1,2, and 3)

where the edges cannot approach one another. The spacing As was taken to be 0.2.
The time increment At for numerical stability and convergence of the solution for

the given 4s=0.2 was found to be

2

At<1.0x10"° for a simply supported edge

At<2.5x107

for a clamped edge
However, throughout this section the deflection response was calculated using
At= 0.002. Typical deflection response curves for a clamped spherical shell

are shown in Fig.2-6. The steady state responses of the above cases in the presence

of heavy damping are lTisted in Table 2-3 together with Kornishin's static solutions.
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ITI
SIMULATION OF A STATIONARY GAUSSIAN WHITE NOISE

3.1 White Noise

White noise is a mathematical idealization of a stationary random
process in which the power spectral density is constant, Go at all
frequencies. Since the autocorrelation function R(t) for white noise

is expressed by
R(t) = ZTTGO(S(T) (3-1)

where §(t) is the Dirac delta function, the process has an infinite

variance and is completely uncorrelated at different times.

3.2 Simulation of Approximate White Noise Processes

True white noise is physically impossible and cannot be simulated
because it requires an infinite mean square value. Therefore in this
section, approximate Gaussian white noise whose power spectral density is
constant over the range of frequencies of interest and falls to zero as
the frequency tends to infinity is generated. To do this, first a sequence
of independent random numbers Bk distributed uniformly in the interval
(0,1) is generated by a power residue method [29] on the CDC 3600
digital computer. Then a white sequence of Gaussian numbers Vi with
mean zero and variance 03 is obtained through the transformations

1/2
Vi = ov(-2 log, Bk) cos2mB,
k odd (3-2)
112
Vis] = ov(-2 1oge Bk) sin2n8k+]
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Construct a function p(t) consisting of a sequence of step functions having
constant time interval Ah, with the ordinates in the various intervals

being white numbers Vi The mathematical formulation of the function

p(t) is

p(t) = = Vi {u[t - (k+1)ah] - u(t - kah)} (3-3)

k=

where u(t) is a unit step function defined by

1 t>0
u(t) = 172 t=0 (3-4)
0 t<0

In this study, the process is assumed to be ergodic, stationary, and
Gaussian. Hence ensemble average may be replaced by time average.

The temporal mean value s and variance og become, respectively,

5
|
by = Jin iy J_T p(t)dt -
3-5
] N
= 1im r v, =0
Now 2N k=N K
T
2 - 2
= d
% }lﬁLQT- J-T [p(t)]°dt (5265
N
- ] 2 2
=limasc I V. =0
Now 2N ooy K r

The autocorrelation function of the random process p(t) is calculated from

R(<) = lim 4

T> =

i
J EICHEOLE (3-7)



which yields
Z ah
R(T) — (3-8)

2 Ah

Q
< N
—~
—
]
>4
ey
A —
—
1

o
—
]

The power spectral density function G(w) is the Fourier transform of
the autocorrelation function R(t). Since R(t) is an even function of

v, then we have

G(w) = %—_ﬂ-r R(T)e-m.iT dt

?]r— J‘p R(t) coswrtdr

2 . wAh
) OvAh s1n—2— (3 9)
m whh i

For wah small, G(w) can be approximated by

2
o Ah 2
o) = 2 - L) (3-10)

Choosing ah sufficiently small G(w) can be approximated by csAh/n.

44
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IV
STATIONARY RESPONSE OF PLATES AND SHALLOW
SHELLS TO GAUSSIAN WHITE RANDOM EXCITATION

4.1 Introduction

In the present Chapter the response analysis of plates and shallow
shells to stationary Gaussian random excitation will be carried out
by various methods. A1l equations and nomenclatures used here are the
same as those described in Chapter II.

The random excitation q(&,n,t) or q(s,t) is assumed to be uniformly
distributed over the structure and applied normal to the middle surface
of the structure. Furthermore, the random excitation is also assumed to

be stationary, ergodic and Gaussian white noise with zero mean value, that is

q(&,n,7) or q(s,t) = Q(x)
E[Q(x)] =0 (4-1)
E[Q(T])Q(Tz)] = ZWGOG(T] = T2)

where G0 is constant, &(t) is the Dirac delta function and E [ ] is the
expectation operator. The methods of solution are the following.

Method I. Numerical Simulation by the Runge-Kutta Method

The equation of motion and the compatibility equation are reduced
to a single-degree-of-freedom dynamical system. To do this we assume
the normal deflection w(g,n,t) or w(s,t) to be the product of the coordinate
function y(&,n) which satisfies the boundary conditions and is suitable
for representing the deflected shape of plates or shells and the generalized

coordinate f(t) such as
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w(g,n,t) = f(1)w(g,n)
(4-2)

w(s,t) = f(t)w(s)
Then we substitute eq. (4-2) into the compatibility equation and solve
for the stress function F in terms of f(tr). Upon using Galerkin's

method [25], the equation of motion and compatibility equation yield

2 3)

£+ 2guf + W2(F + 8% + yF) = oQ(x) (4-3)

where g is the fraction of critical damping. wg, By Y and o are
constants. Note that for a flat plate B is zero.

The approximate white noise process p(t) is generated digitally
by following the method described in Chapter III, by use of egs.

(3-2) and (3-3). The power spectral density is expressed approximately by
2
o$h th
6(w): 1 - 450 (4-4)

If Ah is small and the damping of the system z is small, G(w) is almost

flat near the frequency W, and p(t) can be considered to be white noise.
Therefore,

6(w) * 03 ah/n = 6 (4-5)

The magnitude of the power spectral density can be varied by changing
either o, or ah. Equation (4-3) is now integrated numerically by the
Runge-Kutta method employing the p(t) from eq. (3-4) as an input Q(t).
In the present study, the integration time increment At and the basic

time increment Ah are chosen as

At = ah = 1/10u, (4-€)
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Since the random process is assumed to be ergodic, the ensemble
average may be replaced by the temporal average. Therefore the mean,

mean-square, and the variance of the response f(t) are computed by

E[f]

2
-
—_—
—
—y
(=8
A

=2|—

b

E[2]

=Z|—

2 5 2 1
% "8 fi-(F

where oi is the variance of f(t) and fk is the response of f at time e
The mean-square, E[wz], and the variance, OS’ of the central deflection

are found from eqs. (4-2) and (4-7) as

E[w?] = E[F2] v2 (1722, 1/2)

2 2

of = o2 % (172, 1/2)

The averaging time T (or N) in eq. (4-7) must be determined such that
further increasing T does not affect E[f] or E[fz] appreciably. Here T
is chosen to be 6600 ah.

Method II. Numerical Simulation by the Finite-Difference Technique

Insteady of solving the reduced single-degree-of-freedom dynamical
equation (4-3), the equation of motion (2-8) and the compatibility equation
(2-9) are integrated numerically by the finite-difference method employing

the simulated white noise p(t) as an input. The integration time increment A+t
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and the averaging time T are chosen to be the same as those used in method
I. The mean-square response of the deflection is then calculated by use
of eqs. (4-7) and (4-8).

Method III. Use of the Fokker-Planck Equation [14]

Since the input Q(¥) in eq. (4-3) is white noise, this equation can
be solved exactly by the Fokker-Planck approach. Writing ¥y = f and

Yo = f, eq. (4-3) is equivalent to the following pair of first-order equations.

Y1 %Y (4-9)

2
-2tw Y, - wo(y] + BY$ t+ YY?) + Q(1)a

Yo

The stationary Fokker-Planck equation associated with eq. (4-9) is

2
m6_a 2
o0 3p 3 4 3 2 - -
T ay2 = ay]\YZP) &5 syz'{[zCNOYZ * wo(y] ¥ By] e y]Y)]} p=10
2

(4-10)

where p is a joint probability density for 2 and Yo+ The solution for

P(yys ¥,) obtained by Caughey [14] is

P(yys ¥p) = p(f, )
3
2Cw 2
= cexp {- "—?i—'[%'fz + %—ef3 + %—yf4 + %(f ) ]}~ (4-11)
mo
0

where C is a normalization factor defined by

= 1/[J:Jf p(f,f)dfdf] (4-12)

Since f and f are statistically independent,

p(f,f) = p(f)p(F)
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where p(f) is expressed by

exp (-c]f2 - c2f3 - c3f4)
p(f) = - V] 0 .| (4-13)
Jexp (—c]f - c2f - c3f )df
where
¢y = 1/(20% )
1 5
0
¢, = 8/(40% )
0 (4-14)
Cq = /(402 )
3 WA
o
o% = wGoaz/(4ng)
0
and o% is the mean-square response of the linear system (B=y=0) corresponding
0
to eq. (4-3). The variance o% of f is obtained by
ok = E[f?] - (E[f])? (4-15)

2
f» 2p(f)df - [f”fp(f)df]

For plates, i.e., 8=0 and E[f]=0, o? can be expressed by a parabolic

cylinder function Dv(z) as [16,28]

2 _ 2
og = E[f]
=fn £2p(£)df
J:fzexp(-c]f2 - c3f4)df
fmexp(-c]f2 - c3fa)df
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2

Introducing the change of variable f° = g, we find:

fi” 9]/26XP('C19 = c392)dg
r° exp(-¢q9 - c392)d9

9
g
1 (4-16)

i 2(2c3)”2 : <
172 ( (e ) 172

In the present study the integrals of eq. (4-15) are evaluated numerically.

Method IV. Use of the Equivalent Linearization Technique.

Let us assume that the nonlinear differential equation (4-3) is

linearized as

i 5F ZCwof + wgef = oQ(1) (4-17)

where wge is the equivalent linear stiffness. The error e caused by
this linearization is the difference between eq. (4-3) and eq.(4-17), i.e.,

( 2 )

e = (uy - ud)f - wg(sfz + vF2) (4-18)

: 2
In order to determine wge’ we choose Wye SO aS to minimize the mean-square

value of the error e. The mean-square of e is

Ele?] = (u2, - w2)ELF2] + uwlBPELF"] + wlvPELFO]

2 2. 2 3 4
- 20l - WB)uZBELF] + 2utvBELF] - 2uly(ul, - WDIELFY]
Minimization of E[e2] is achieved by requiring that
2
dEle]. o (4-19)
d(w” )



from which we have

2

3 4
o2 = w§ {1 + BELF IHyELf ]y (4-20)

B[]

Since Q(t) is a stationary Gaussian random process with zero mean
value, the response of the linearized system is also assumed to be
stationary Gaussian if the nonlinearity of the system is small. Then,

E[f4] and E[f3] are evaluated as

e[f4] = 3(e[£21)2

(4-21)
E[F] = 0
The mean-square response of the linearized system is found from
2 GZGO
E[f ] i (wz -w2)2+4C2w2;2 dw
oe 0 0
ﬂazGo
= '———2— (4-22)
4Cw0woe
Substituting eqs. (4-21) and (4-22) into eq. (4-20), we obtain
3y(ELF21% + E[F2] - o5 = 0 (4-23)
where cio is the mean-square response of the corresponding linear system
of eq. (4-3) and obtained by replacing “ge by mg. Solving for E[fz] from

eq. (4-23), we find

1/2
€[F2] = = [0 + 12y05) - 1] (4-24)
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Note that if B8 is not zero, E[f3] is not zero. However, the estimation
of E[f3] from the linearized system leads to the conclusion that E[f3]
is zero. Therefore, for the case of shells where g is non-zero, this
method will not give a good approximate solution.
4.2 Plates

The mean-square deflection response is evaluated by Method I
through IV for the following cases:

(a) Simply Supported Square Plate (»=1)

(b) Simply Supported Rectangular Plate (»=2)
(c)
(d) Clamped Rectangular Plate (=2)

Clamped Square Plate (»=1)

(e) Simply Supported Circular Plate
(f) Clamped Circular Plate

It is assumed that the supports for all cases do not permit in-plane
displacement of the edges of the structure. The governing equations
and the boundary conditions are described in Chapter II.

We assume the following form for deflection w:

W= f(x)u(g,n) = f(r)sinfEsinm  for (a) and (b)  (4-25)
W= fx)u(E.n) = f(f)siﬁzg—ﬁsmzm for (c) and (d)  (4-26)
W= F(r)u(s) = £(x)(1-2m s%mmosh) for (e) (4-27)
w= fla)u(s) = f(r)(1-25%4s%) for (f) (4-28)

where m, = (3+v)/(5+v) and m, = (T+v)/(3+v) A11 above assumed solutions

satisfy the boundary conditions for each case. By substituting w into the
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compatibility equation and solving for F, then using Galerkin's method,

we have the following final equation for each case:

f + Z;wo% + wﬁ(f + yf3) = aQ(7)

where wg. y and o for each case are listed in Table 4-1. Once wg, Y
and o :are determined, the mean-square response of the deflection can
be evaluated by methods I, III, and IV. The damping coefficient is
chosen as ¢ = 0.05 for each case. The mean-square response of the
central deflection versus spectral density G0 are shown in Figs. 4-1
through 4-6.

The results show that the mean-square response by methods I, III,
and IV are reasonably close to each other, however the results obtained
by method II deviate very much from those found by the other three
methods. This is due to the truncation error and the propagation error
involved in the process of numerical integration. (Case (b) was not
worked by method II.) Since the computation time required by method II
is great (for example for case (a), it took 46 minutes to get the sinale
point in Fig. 4-1.), the method II is not recommended. It is also to be
noted that the results obtained by the equivalent linearization technique
are smaller than those by the Fokker-Planck approach for all cases.

4.3 Shells

In this section, the variance of deflection of the following shallow
shells is evaluated by methods I and IV.

(g) Simply Supported Cylindrical Shells (k]=0 and k,=5, aspect

ratio » = 1.0). Here, w is assumed to take the form of

eq. (4-25).
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(h) Clamped Cylindrical Shells (k]=0 and k,=5,aspect ratio
A = 1.0). Here, w is assumed to take the form of eq. (4-26).

(i) Clamped Cylindrical Shells (k]=0 and k,=5, aspect ratio X = 2015
Here, w is assumed to take the form of eq. (4-26).

(j) Simply Supported Spherical Shell (k=0.5). Here, w is assumed
to take the form of eq. (4.27).

(k) Clamped Spherical Shell (k=1.0). Here, w is assumed to take
the form of eq. (4-28).

Following the same procedure described in section 4.2, we have

2

£+ 20 f + u2(F + 8f% + ¥f2) = oQ(x) (4-3)

where the constants wg, B, v and a for each case are Tisted in Table 4-1.
The variance 03 of the central deflection versus power spectral density

Go for each case is plotted in Fig. 4-7 through 4-11. From these figures
it can be seen that the result obtained by the numerical simulation method

are in good agreement with the exact solution when 05 is small.
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TABLE 4-1
VALUES OF 02,8 , ¥ AND a

1. Simply Supported Rectangular Shells (Cases (a),(b) 2nd (#))

] (A2+1)2 /% +2L (1-v?) (K, +k5)? (TT_‘-6’+‘)/rr‘*( A3+1)3
e +768(k3#2Vk k)2 +K5 A" )'/)frﬁ |
B {-8(1—v°)[u(kl+k2)/(x=+1)3+(kl+'kzx /%] -72[x,
+VA2 (kl+k2)+k2x4] iy }/‘*’2
Y {3 m[(1-¥2) (W +1)/2+( At +2y22+1)] /8#}/@;
a i~92(1-v2 )/n?

2, Clamped Rectancular Shells (Cases (¢),(3),(n) and (i))

16[ (3 +207+3)+3 (k3+20A 2k K+ X k3] /90 +(1-12)

“o x[32(k3+x32* )/ N +(k1+k2)3/()\2+1)2:| /12
ot ey [Gep iy ) D/ + ey )/ (\*+1)7] -6
B
x[k2+v2? (kl+k2)+k2>.4] ik }/wg
, {s1mh =) (i 41)/3680 + S0y )T [1/ (1 244)?

F 1/(03%+1)2 + 4/(3%+1)%] + %n"*(x"+2v>\3+l)/x‘*}/co§

64 (1-v2)/3
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3. Simply Supportcd Spherical Shells (Cases (e) and (i))

m .
{%m2(2m2—3)+?%(m3-5m2+5)(l-va)k3-6(2m2-3)(Hy)

% x[mz(S-)/)-B(B-V)]ka}mlA

{%(Sm;~30mz+57m2-36)k3— 11%21(3m5-8m2+6)

% [0 (5=9)-3(3~» )] k- %(1+v) (2m2-3)[m§(7—V)—4m2(5—»’)
+6(3-v)] k[n2a/w?

" {%(m;-?m;+266m;_—35m2+14) (.1--)/a )- %—(1+v) (3m3-8m2+6)

(3 (7-)-lim, (5-9)+6(3-V] }rrniA/wz

a | 60(1-¥2)(7+V) (5+V)/(3y2+36V+113)

4. Clamped Spherical Shells (Case (f) and (k))

. SRS T
2 L[32048(7-29) (1+)k?]

£
WK

L
Y $2(23-99) (149 /o

a |20(1-y2)

where A= -126(3+V)(5+V)/(3y?+36V+113)
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V
CONCLUSIONS

The large amplitude vibrations of thin elastic plates and shallow
shells having various boundary conditions and subjected to random
excitation were investigated by using verious approximate techniques.

As a preliminary study, the analysis of the response of thin elastic
plates and shallow shells with damping undergoing moderately large
deflections and subjected to step loading was carried out by the finite-
difference method in Chapter II. The steady state response for each
case was compared with the existing solution obtained by static analysis
to check the accuracy of the approximation. The integration time
increment bringing about numerical stability and convergence of the
solution for a fixed grid spacing was also determined.

In Chapter III a digital simulation technique for representing
a white stationary Gaussian random process was presented. The random
vibrations of thin elastic rectangular plates and circular plates subject
to white random excitation were simulated numerically by two different
methods. The first method consists of three steps: The first step requires
the reduction of the governing partial differential equations to a single-
degree-of-freedom dynamical equation. This was achieved by assuming the
normal deflection to be represented by a product of the generalized
coordinates and a coordinate to simulate the random load numerically by
the procedure described in Chapter III. Then the desired statistical
properties were computed by numerically integrating the dynamical equation

by the Runge-Kutta method using the simulated random load as an input.
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The second method is to integrate the governing equation of motion and
the compatibility equation numerically by the finite-difference methods
described in Chapter II again employing the simulated random load as
an input. In the second numerical simulation method the total response
may contain the response associated with higher modes, however, this method
requires much more computing time than the first technique. To compare
the results obtained by the two numerical simulation methods, the mean-
square response of deflection was determined by both the equivalent
linearization technique and by the Fokker-Planck approach. For the cases
of rectangular plates and circular plates, the mean-square response of
the nonlinear system was found to depart more from the linear response
for simply supported plates than for clamped ones. The solutions obtained
by the first numerical simulation method were reasonably close to those
obtained by the equivalent linearization technique and by the Fokker-Planck
approach. However, the second numerical simulation method gave rather
poor solutions because of the truncation error and the propagation error
involved in the integration process. It can be concluded that considering
the accuracy of the solution and the computing time, the second numerical
simulation method is not suitable for the simulation of random vibrations
of plates unless a much more efficient method for solving the governing
partial differential equations is used.

In the last section of Chapter IV, the stationary response of shallow
shells to white random excitation was obtained by both the first numerical
simulation method and the Fokker-Planck approach, within the framework

of a single mode approximation.
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NOMENCLATURE

dimension of plate or shell
square matrices
square matrices
square matrices

viscous damping and dimensionless viscous
damping, respectively

flexural rigidity of plate or shell
Young's modulus

Airy stress function and dimensionless Airy
stress function

thickness of plate or shell
column matrices

column matrices

curvatures of shell

dimensionless curvatures of shell
12(1-v2)

bending moments

bending moments

number of interior points plus boundary
point in £ direction

number of interior points plus boundary point
in n direction

points at time level Ty
amplitude of Tateral load

lateral load and dimensionless load, respectively



An

oy T

y
dax Tyn

o*

*
Xy
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coordinate

ratio Ag/An

base radius of spherical shell

autocorrelation function

dimensionless coordinate

spacing dimension

time

unit step function

displacements in x and y directions, respectively

dimensionless displacements in £ and n directions,
respectively

column matrix whose elements are W and V

normal deflection and dimensionless normal
deflection, respectively

function defined by eq. (2-19)
function defined by eq. (2-20)
Poisson's ratio (take v = 0.3)
dimensionless time

mass density of the shell
aspect ratio a/b

spacing dimensions

time increment

membrane stresses in the middle surface

= dimensionless membrane in the middle surface

membrane stresses in the middle surface

dimensionless membrane stresses



‘P(E.ﬂ). 1J"(S)

independent random number
constants
parabolic cylinder function

difference between a nonlinear system and its
equivalent Tinear system

expectation operator

power spectral density of the load
generalized coordinate

basic time increment

a joint probability density for ¥y and Yo
dynamical variables

a white Gaussian number

constants

fraction of critical damping

frequency

equivalent Tinear stiffness

integration time increment

variance of the deflection

variance of the generalized coordinate f
variance of f in a Tinear system

coordinate functions
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Figure 2-2: Geometry of Shallow Spherical Shell
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APPENDIX 80

The Compatibility Equation at the Center of the Shell s=0

The compatibility equation in dimensionless form is
4 3 2 2 2

afF , -2 F _af oF _ 2w _ow _ eaw 3w
w i y+ =3 7 ki =)
S $3S S S S 3S 39S  SoS S93S as
(A-1)
At s=0,
W -
3s 0 (A-2)
Therefore, using L'Hospital's rule,
: W _ o W
0" Tas T2 Vel
The right hand side of eq.(A-1) becomes
2. 2 2
RMH.S. = - (£5) -2k(23) (A-4)
3s 3s
which is bounded at s=0. Expanding F into a Taylor series at s=0, we have
= 2 . n =
F = ag + a;s +ta,st +ctoas (A-5)
where
g = Fs=0
........... (A~*
_ 1, n

Substituting eq.(A-5) into the left hand side of eq. (A-1), V4F is expressed as
Ao . =3 =
vVF = a;s "t 9a3s + 64a4 + 165a55 + oo (A-7)
Since the right hand side of eq.(A-1) is bounded at s=0, the left hand side

must be bounded. From eq.(A-7) we must have

a; =az; =0 (A-8)
Therefore,
4
Tiny'F = 642, = 3(2F)
s+ 0 s s=0 (A-9)
The compatibility equation at s=0 is expressed as

2

4 2
8 2aF 3 W W (A-10)
e Aepesl e (o] e 2k(3L39
& as4 3S as
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